z-logo
open-access-imgOpen Access
Genomic comparison of early-passage conditionally reprogrammed breast cancer cells to their corresponding primary tumors
Author(s) -
Akanksha Mahajan,
Bruna M. Sugita,
Anju Duttargi,
Francisco Herrera Sáenz,
Ewa Krawczyk,
Justine N. McCutcheon,
Aline Simoneti Fonseca,
Bhaskar Kallakury,
Paula R. Pohlmann,
Yuriy Gusev,
Luciane R. Cavalli
Publication year - 2017
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0186190
Subject(s) - biology , breast cancer , cancer research , comparative genomic hybridization , microrna , somatic cell , cancer , gene expression profiling , flow cytometry , gene , genome , microbiology and biotechnology , gene expression , genetics
Conditionally reprogrammed cells (CRCs) are epithelial cells that are directly isolated from patients’ specimens and propagated in vitro with feeder cells and a Rho kinase inhibitor. A number of these cells have been generated from biopsies of breast cancer patients, including ductal carcinoma in situ and invasive carcinomas. The characterization of their genomic signatures is essential to determine their ability to reflect the natural biology of their tumors of origin. In this study, we performed the genomic characterization of six newly established invasive breast cancer CRC cultures in comparison to the original patients’ primary breast tumors (PBT) from which they derived. The CRCs and corresponding PBTs were simultaneously profiled by genome-wide array-CGH, targeted next generation sequencing and global miRNA expression to determine their molecular similarities in the patterns of copy number alterations (CNAs), gene mutations and miRNA expression levels, respectively. The CRCs’ epithelial cells content and ploidy levels were also evaluated by flow cytometry. A similar level of CNAs was observed in the pairs of CRCs/PBTs analyzed by array-CGH, with >95% of overlap for the most frequently affected cytobands. Consistently, targeted next generation sequencing analysis showed the retention of specific somatic variants in the CRCs as present in their original PBTs. Global miRNA profiling closely clustered the CRCs with their PBTs (Pearson Correlation, ANOVA paired test, P<0.05), indicating also similarity at the miRNA expression level; the retention of tumor-specific alterations in a subset of miRNAs in the CRCs was further confirmed by qRT-PCR. These data demonstrated that the human breast cancer CRCs of this study maintained at early passages the overall copy number, gene mutations and miRNA expression patterns of their original tumors. The further characterization of these cells by other molecular and cellular phenotypes at late cell passages, are required to further expand their use as a unique and representative ex-vivo tumor model for basic science and translational breast cancer studies.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here