Open Access
Screening of a long-term sample set reveals two Ranavirus lineages in British herpetofauna
Author(s) -
Stephen J. Price,
Alexandra Wadia,
Owen N. Wright,
William T. M. Leung,
Andrew A. Cunningham,
Becki Lawson
Publication year - 2017
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0184768
Subject(s) - ranavirus , outbreak , biology , clade , population , amphibian , iridovirus , zoology , virology , virus , ecology , phylogenetics , medicine , environmental health , genetics , gene
Reports of severe disease outbreaks in amphibian communities in mainland Europe due to strains of the common midwife toad virus (CMTV)-like clade of Ranavirus are increasing and have created concern due to their considerable population impacts. In Great Britain, viruses in another clade of Ranavirus –frog virus 3 (FV3)-like—have caused marked declines of common frog ( Rana temporaria ) populations following likely recent virus introductions. The British public has been reporting mortality incidents to a citizen science project since 1992, with carcasses submitted for post-mortem examination, resulting in a long-term tissue archive spanning 25 years. We screened this archive for ranavirus (458 individuals from 228 incidents) using molecular methods and undertook preliminary genotyping of the ranaviruses detected. In total, ranavirus was detected in 90 individuals from 41 incidents focused in the north and south of England. The majority of detections involved common frogs (90%) but also another anuran, a caudate and a reptile. Most incidents were associated with FV3-like viruses but two, separated by 300 km and 16 years, involved CMTV-like viruses. These British CMTV-like viruses were more closely related to ranaviruses from mainland Europe than to each other and were estimated to have diverged at least 458 years ago. This evidence of a CMTV-like virus in Great Britain in 1995 represents the earliest confirmed case of a CMTV associated with amphibians and raises important questions about the history of ranavirus in Great Britain and the epidemiology of CMTV-like viruses. Despite biases present in the opportunistic sample used, this study also demonstrates the role of citizen science projects in generating resources for research and the value of maintaining long-term wildlife tissue archives.