Open Access
Therapeutic time window for conivaptan treatment against stroke-evoked brain edema and blood-brain barrier disruption in mice
Author(s) -
Emil Zeynalov,
S. J. Jones,
Joseph P. Elliott
Publication year - 2017
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0183985
Subject(s) - medicine , stroke (engine) , ischemia , edema , blood–brain barrier , neuroprotection , anesthesia , cerebral edema , cerebral blood flow , brain ischemia , pharmacology , central nervous system , mechanical engineering , engineering
Background Ischemic stroke is often complicated by brain edema, disruption of blood-brain barrier (BBB), and uncontrolled release of arginine-vasopressin (AVP). Conivaptan, a V1a and V2 receptor antagonist, reduces brain edema and minimizes damage to the blood-brain barrier after stroke. Most stroke patients do not receive treatment immediately after the onset of brain ischemia. Delays in therapy initiation may worsen stroke outcomes. Therefore, we designed a translational study to explore the therapeutic time window for conivaptan administration. Methods Mice were treated with conivaptan beginning 3, 5, or 20 hours after 60-minute focal middle cerebral artery occlusion. Treatments were administered by continuous IV infusion for a total of 48 hours. Brain edema and blood-brain barrier (BBB) disruption were evaluated at endpoint. Results Conivaptan therapy initiated at 3 hours following ischemia reduced edema in the ipsilateral hemisphere, which corresponded with improvements in neurological deficits. Stroke-triggered BBB disruption was also reduced in mice when conivaptan treatments were initiated at 3 hours of reperfusion. However, 5 and 20-hour delays of conivaptan administration failed to reduce edema or protect BBB. Conclusion Timing of conivaptan administration is important for successful reduction of brain edema and BBB disruption. Our experimental data open new possibilities to repurpose conivaptan, and make an important “bench-to-bedside translation” of the results into clinical practice.