z-logo
open-access-imgOpen Access
Feature point based 3D tracking of multiple fish from multi-view images
Author(s) -
Zhenyu Qian,
Yan Qiu Chen
Publication year - 2017
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0180254
Subject(s) - computer vision , artificial intelligence , feature (linguistics) , trajectory , tracking (education) , computer science , point (geometry) , matching (statistics) , feature matching , pattern recognition (psychology) , video tracking , representation (politics) , motion (physics) , object (grammar) , feature extraction , mathematics , geometry , physics , psychology , pedagogy , philosophy , linguistics , statistics , astronomy , politics , political science , law
A feature point based method is proposed for tracking multiple fish in 3D space. First, a simplified representation of the object is realized through construction of two feature point models based on its appearance characteristics. After feature points are classified into occluded and non-occluded types, matching and association are performed, respectively. Finally, the object's motion trajectory in 3D space is obtained through integrating multi-view tracking results. Experimental results show that the proposed method can simultaneously track 3D motion trajectories for up to 10 fish accurately and robustly.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here