
Population structure within the one-dimensional range of a coastal plain katydid
Author(s) -
Gideon Ney,
Johannes Schul
Publication year - 2017
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0179361
Subject(s) - biological dispersal , range (aeronautics) , isolation by distance , biogeography , ecology , biology , gene flow , population , coastal plain , genetic structure , genus , species distribution , salt marsh , latitude , evolutionary biology , geography , genetic variation , habitat , biochemistry , materials science , demography , sociology , composite material , gene , geodesy
Biogeography plays a significant role in species’ dispersal, and in turn population structure, across the landscape. The North American katydid Neoconocephalus melanorhinus belongs to a genus with high mobility. Unlike other members of the genus, N . melanorhinus is a salt marsh specialist restricted to a narrow corridor along the Atlantic and Gulf coasts. In addition, their range crosses at least one known biogeographic barrier and possesses biogeographic characteristics of the stepping-stone as well as the hierarchical island model of dispersal. Using AFLP markers we searched for areas that conform to the predictions of isolation by distance and for areas of non-uniform increases in genetic variance, indicative of isolation by barrier. We found significant genetic differentiation between all twelve sampled sites. Isolation by distance was the predominant pattern of variation across their range. In addition, we saw possible evidence of two biogeographic barriers to gene flow, one at the Atlantic-Gulf divide and the other along the Gulf coast. We also observed a change in body size across the range. Body size, as measured by male hind femur length, correlated closely with latitude, a possible indication of differential selection across the species range.