z-logo
open-access-imgOpen Access
Metabolomic profiling to characterize acute intestinal ischemia/reperfusion injury
Author(s) -
Rachel G. Khadaroo,
Thomas A. Churchill,
Victor Tso,
Karen Madsen,
Chris M. Lukowski,
Saad Y. Salim
Publication year - 2017
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0179326
Subject(s) - medicine , ischemia , creatinine , sepsis , allantoin , metabolite , superior mesenteric artery , urinary system , gastroenterology , pathology , biology , biochemistry
Sepsis and septic shock are the leading causes of death in critically ill patients. Acute intestinal ischemia/reperfusion (AII/R) is an adaptive response to shock. The high mortality rate from AII/R is due to the severity of the disease and, more importantly, the failure of timely diagnosis. The objective of this investigation is to use nuclear magnetic resonance (NMR) analysis to characterize urine metabolomic profile of AII/R injury in a mouse model. Animals were exposed to sham, early (30 min) or late (60 min) acute intestinal ischemia by complete occlusion of the superior mesenteric artery, followed by 2 hrs of reperfusion. Urine was collected and analyzed by NMR spectroscopy. Urinary metabolite concentrations demonstrated that different profiles could be delineated based on the duration of the intestinal ischemia. Metabolites such as allantoin, creatinine, proline, and methylamine could be predictive of AII/R injury. Lactate, currently used for clinical diagnosis, was found not to significantly contribute to the classification model for either early or late ischemia. This study demonstrates that patterns of changes in urinary metabolites are effective at distinguishing AII/R progression in an animal model. This is a proof-of-concept study to further support examination of metabolites in the clinical diagnosis of intestinal ischemia reperfusion injury in patients. The discovery of a fingerprint metabolite profile of AII/R will be a major advancement in the diagnosis, treatment, and prevention of systemic injury in critically ill patients.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here