z-logo
open-access-imgOpen Access
Base-rate sensitivity through implicit learning
Author(s) -
Andrew Wismer,
Corey J. Bohil
Publication year - 2017
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0179256
Subject(s) - sensitivity (control systems) , medicine , computer science , engineering , electronic engineering
Two experiments assessed the contributions of implicit and explicit learning to base-rate sensitivity. Using a factorial design that included both implicit and explicit learning disruptions, we tested the hypothesis that implicit learning underlies base-rate sensitivity from experience (and that explicit learning contributes comparatively little). Participants learned to classify two categories of simple stimuli (bar graph heights) presented in a 3:1 base-rate ratio. Participants learned either from “observational” training to disrupt implicit learning or “response” training which supports implicit learning. Category label feedback on each trial was followed either immediately or after a 2.5 second delay by onset of a working memory task intended to disrupt explicit reasoning about category membership feedback. Decision criterion values were significantly larger following response training, suggesting that implicit learning underlies base-rate sensitivity. Disrupting explicit processing had no effect on base-rate learning as long as implicit learning was supported. These results suggest base-rate sensitivity develops from experience primarily through implicit learning, consistent with separate learning systems accounts of categorization.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here