z-logo
open-access-imgOpen Access
Diagnostic value and relative weight of sequence-specific magnetic resonance features in characterizing clinically significant prostate cancers
Author(s) -
Olivier Rouvière,
Tristan Dagonneau,
Fanny Cros,
Flavie Bratan,
Laurent Roche,
Florence MègeLechevallier,
A. Ruffion,
Sébastien Crouzet,
M. Colombel,
Muriel Rabilloud
Publication year - 2017
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0178901
Subject(s) - medicine , prostate cancer , receiver operating characteristic , prostatectomy , magnetic resonance imaging , prostate , nuclear medicine , urology , cancer , radiology
Purpose To assess the diagnostic weight of sequence-specific magnetic resonance features in characterizing clinically significant prostate cancers (csPCa). Materials and methods We used a prospective database of 262 patients who underwent T2-weighted, diffusion-weighted, and dynamic contrast-enhanced (DCE) imaging before prostatectomy. For each lesion, two independent readers (R1, R2) prospectively defined nine features: shape, volume (V_Max), signal abnormality on each pulse sequence, number of pulse sequences with a marked (S_Max) and non-visible (S_Min) abnormality, likelihood of extracapsular extension (ECE) and PSA density (dPSA). Overall likelihood of malignancy was assessed using a 5-level Likert score. Features were evaluated using the area under the receiver operating characteristic curve (AUC). csPCa was defined as Gleason ≥7 cancer (csPCa-A), Gleason ≥7(4+3) cancer (csPCa-B) or Gleason ≥7 cancer with histological extraprostatic extension (csPCa-C), Results For csPCa-A, the Signal1 model (S_Max+S_Min) provided the best combination of signal-related variables, for both readers. The performance was improved by adding V_Max, ECE and/or dPSA, but not shape. All models performed better with DCE findings than without. When moving from csPCa-A to csPCa-B and csPCa-C definitions, the added value of V_Max, dPSA and ECE increased as compared to signal-related variables, and the added value of DCE decreased. For R1, the best models were Signal1+ECE+dPSA (AUC = 0,805 [95%CI:0,757–0,866]), Signal1+V_Max+dPSA (AUC = 0.823 [95%CI:0.760–0.893]) and Signal1+ECE+dPSA [AUC = 0.840 (95%CI:0.774–0.907)] for csPCa-A, csPCA-B and csPCA-C respectively. The AUCs of the corresponding Likert scores were 0.844 [95%CI:0.806–0.877, p = 0.11], 0.841 [95%CI:0.799–0.876, p = 0.52]) and 0.849 [95%CI:0.811–0.884, p = 0.49], respectively. For R2, the best models were Signal1+V_Max+dPSA (AUC = 0,790 [95%CI:0,731–0,857]), Signal1+V_Max (AUC = 0.813 [95%CI:0.746–0.882]) and Signal1+ECE+V_Max (AUC = 0.843 [95%CI: 0.781–0.907]) for csPCa-A, csPCA-B and csPCA-C respectively. The AUCs of the corresponding Likert scores were 0. 829 [95%CI:0.791–0.868, p = 0.13], 0.790 [95%CI:0.742–0.841, p = 0.12]) and 0.808 [95%CI:0.764–0.845, p = 0.006]), respectively. Conclusion Combination of simple variables can match the Likert score’s results. The optimal combination depends on the definition of csPCa.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here