
Dynamic interaction between fetal adversity and a genetic score reflecting dopamine function on developmental outcomes at 36 months
Author(s) -
Adrianne Rahde Bischoff,
Irina Pokhvisneva,
Étienne Léger,
Hélène Gaudreau,
Meir Steiner,
James L. Kennedy,
Kieran J. O’Donnell,
Josie Diorio,
Michael J. Meaney,
Patrícia Pelufo Silveira
Publication year - 2017
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0177344
Subject(s) - dopamine , medicine , psychology , bioinformatics , developmental psychology , biology , neuroscience
Background Fetal adversity, evidenced by poor fetal growth for instance, is associated with increased risk for several diseases later in life. Classical cut-offs to characterize small (SGA) and large for gestational age (LGA) newborns are used to define long term vulnerability. We aimed at exploring the possible dynamism of different birth weight cut-offs in defining vulnerability in developmental outcomes (through the Bayley Scales of Infant and Toddler Development), using the example of a gene vs. fetal adversity interaction considering gene choices based on functional relevance to the studied outcome. Methods 36-month-old children from an established prospective birth cohort (Maternal Adversity, Vulnerability, and Neurodevelopment) were classified according to birth weight ratio (BWR) (SGA ≤0.85, LGA >1.15, exploring a wide range of other cut-offs) and genotyped for polymorphisms associated with dopamine signaling (TaqIA-A1 allele, DRD2-141C Ins/Ins, DRD4 7-repeat, DAT1-10- repeat, Met/Met-COMT), composing a score based on the described function, in which hypofunctional variants received lower scores. Results There were 251 children (123 girls and 128 boys). Using the classic cut-offs (0.85 and 1.15), there were no statistically significant interactions between the neonatal groups and the dopamine genetic score. However, when changing the cut-offs, it is possible to see ranges of BWR that could be associated with vulnerability to poorer development according to the variation in the dopamine function. Conclusion The classic birth weight cut-offs to define SGA and LGA newborns should be seen with caution, as depending on the outcome in question, the protocols for long-term follow up could be either too inclusive—therefore most costly, or unable to screen true vulnerabilities—and therefore ineffective to establish early interventions and primary prevention.