z-logo
open-access-imgOpen Access
HSTLBO: A hybrid algorithm based on Harmony Search and Teaching-Learning-Based Optimization for complex high-dimensional optimization problems
Author(s) -
Shouheng Tuo,
Longquan Yong,
Deng Fang-an,
Yanhai Li,
Yong Lin,
LU Qiu-ju
Publication year - 2017
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0175114
Subject(s) - harmony search , computer science , mathematical optimization , complementarity (molecular biology) , optimization problem , convergence (economics) , global optimization , metaheuristic , engineering optimization , exploit , premature convergence , algorithm , artificial intelligence , particle swarm optimization , mathematics , computer security , genetics , economics , biology , economic growth
Harmony Search (HS) and Teaching-Learning-Based Optimization (TLBO) as new swarm intelligent optimization algorithms have received much attention in recent years. Both of them have shown outstanding performance for solving NP-Hard optimization problems. However, they also suffer dramatic performance degradation for some complex high-dimensional optimization problems. Through a lot of experiments, we find that the HS and TLBO have strong complementarity each other. The HS has strong global exploration power but low convergence speed. Reversely, the TLBO has much fast convergence speed but it is easily trapped into local search. In this work, we propose a hybrid search algorithm named HSTLBO that merges the two algorithms together for synergistically solving complex optimization problems using a self-adaptive selection strategy. In the HSTLBO, both HS and TLBO are modified with the aim of balancing the global exploration and exploitation abilities, where the HS aims mainly to explore the unknown regions and the TLBO aims to rapidly exploit high-precision solutions in the known regions. Our experimental results demonstrate better performance and faster speed than five state-of-the-art HS variants and show better exploration power than five good TLBO variants with similar run time, which illustrates that our method is promising in solving complex high-dimensional optimization problems. The experiment on portfolio optimization problems also demonstrate that the HSTLBO is effective in solving complex read-world application.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here