z-logo
open-access-imgOpen Access
CC-223 blocks mTORC1/C2 activation and inhibits human hepatocellular carcinoma cells in vitro and in vivo
Author(s) -
Zhizhong Xie,
Jiqin Wang,
Mei Liu,
Deshan Chen,
Chao Qiu,
Kai Sun
Publication year - 2017
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0173252
Subject(s) - mtorc1 , cancer research , apoptosis , pi3k/akt/mtor pathway , mtorc2 , mitochondrial permeability transition pore , chemistry , reactive oxygen species , cell growth , in vivo , biology , programmed cell death , microbiology and biotechnology , biochemistry
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related human mortalities. Over-activation of mammalian target of rapamycin (mTOR) is important for HCC tumorigenesis and progression. The current study assessed the potential anti-HCC activity by a novel mTOR kinase inhibitor, CC-223. We demonstrate that CC-223, at nM concentrations, induced profound cytotoxic and anti-proliferative activities against established HCC cell lines (HepG2, KYN-2 and Huh-7) and primary human HCC cells. Meanwhile, CC-223 activated caspase-3/-9 and apoptosis in the above HCC cells. CC-223 concurrently blocked mTORC1 and mTORC2 activation, and its cytotoxicity against HCC cells was much more potent than the traditional mTORC1 inhibitors (RAD001 and rapamycin). Further studies demonstrated that CC-223 disrupted mitochondrial function, and induced mitochondrial permeability transition pore (mPTP) opening and reactive oxygen species (ROS) production. On the other hand, ROS scavengers and mPTP blockers (cyclosporin A or sanglifehrin A) largely attenuated CC-223-induced HepG2 cell apoptosis. In vivo studies showed that oral administration of CC-223 dramatically inhibited growth of HepG2 xenografts in severe combined immuno-deficient (SCID) mice. mTORC1/2 activation was also blocked in xenografts with CC-223 administration. Together, CC-223 simultaneously blocks mTORC1/2 and efficiently inhibits human HCC cells.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here