z-logo
open-access-imgOpen Access
Applying a high-throughput fluorescence polarization assay for the discovery of chemical probes blocking La:RNA interactions in vitro and in cells
Author(s) -
Gunhild Sommer,
Alena Fedarovich,
Venkatesh Kota,
Reycel Rodriguez,
Charles D. Smith,
Tilman Heise
Publication year - 2017
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0173246
Subject(s) - rna , small molecule , biology , electrophoretic mobility shift assay , in vitro , microbiology and biotechnology , high throughput screening , messenger rna , rna binding protein , chemistry , gene expression , biochemistry , gene
The RNA-binding protein La is overexpressed in a number of tumor tissues and is thought to support tumorigenesis by binding to and facilitating the expression of mRNAs encoding tumor-promoting and anti-apoptotic factors. Hence, small molecules able to block the binding of La to specific RNAs could have a therapeutic impact by reducing the expression of tumor-promoting and anti-apoptotic factors. Toward this novel therapeutic strategy, we aimed to develop a high-throughput fluorescence polarization assay to screen small compound libraries for molecules blocking the binding of La to an RNA element derived from cyclin D1 mRNA. Herein, we make use of a robust fluorescence polarization assay and the validation of primary hits by electrophoretic mobility shift assays. We showed recently that La protects cells against cisplatin treatment by stimulating the protein synthesis of the anti-apoptotic factor Bcl2. Here, we show by RNA immunoprecipitation experiments that one small compound specifically impairs the association of La with Bcl2 mRNA in cells and sensitizes cells for cipslatin-induced cell death. In summary, we report the application of a high-throughput fluorescence polarization assay to identify small compounds that impair the binding of La to target RNAs in vitro and in cells.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here