
Smad3-dependent CCN2 mediates fibronectin expression in human skin dermal fibroblasts
Author(s) -
Trupta Purohit,
Zhaoping Qin,
Chunji Quan,
Zhenhua Lin,
Taihao Quan
Publication year - 2017
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0173191
Subject(s) - fibronectin , ctgf , extracellular matrix , smad , microbiology and biotechnology , transforming growth factor , human skin , stromal cell , biology , wound healing , growth factor , dermis , cancer research , mediator , connective tissue , transforming growth factor beta , pathology , immunology , medicine , anatomy , receptor , biochemistry , genetics
The potential involvement of connective tissue growth factor (CCN2/CTGF) in extracellular matrix (ECM) production is recognized. However, the role CCN2 in fibronectin (FN) gene expression has remained incompletely understood and even controversial. Here we report that CCN2 is absolutely necessary for FN expression in primary human skin dermal fibroblasts, the major cells responsible for ECM production in skin. Gain- and loss-of-function approaches demonstrate that CCN2 is an essential component of FN expression in both basal and stimulation by TGF-β signaling, the major regulator of FN expression. CCN2 is significantly induced by Smad3, a critical mediator of TGF-β signaling. CCN2 acts as a downstream mediator of TGF-β/Smad signaling and acting synergistically with TGF-β to regulate FN gene expression. Finally, we observed that CCN2 and FN predominantly expressed in the dermis of normal human skin, stromal tissues of skin squamous cell carcinoma (SCC), and simultaneously induced in wounded human skin in vivo . These findings provide evidence that CCN2 is responsible for mediating the stimulatory effects of TGF-β/Smad on FN gene expression, and attenuation of CCN2 expression may benefit to reduce fibrotic ECM microenvironment in disease skin.