
A simulated annealing heuristic for maximum correlation core/periphery partitioning of binary networks
Author(s) -
Michael J. Brusco,
Hannah J. Stolze,
Michaéla Hoffman,
Douglas Steinley
Publication year - 2017
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0170448
Subject(s) - simulated annealing , core (optical fiber) , heuristic , computer science , mathematical optimization , binary number , set (abstract data type) , algorithm , mathematics , artificial intelligence , telecommunications , arithmetic , programming language
A popular objective criterion for partitioning a set of actors into core and periphery subsets is the maximization of the correlation between an ideal and observed structure associated with intra-core and intra-periphery ties. The resulting optimization problem has commonly been tackled using heuristic procedures such as relocation algorithms, genetic algorithms, and simulated annealing. In this paper, we present a computationally efficient simulated annealing algorithm for maximum correlation core/periphery partitioning of binary networks. The algorithm is evaluated using simulated networks consisting of up to 2000 actors and spanning a variety of densities for the intra-core, intra-periphery, and inter-core-periphery components of the network. Core/periphery analyses of problem solving, trust, and information sharing networks for the frontline employees and managers of a consumer packaged goods manufacturer are provided to illustrate the use of the model.