z-logo
open-access-imgOpen Access
Active Hydrogen Bond Network (AHBN) and Applications for Improvement of Thermal Stability and pH-Sensitivity of Pullulanase from Bacillus naganoensis
Author(s) -
Qingyan Wang,
Nengzhong Xie,
Qiang Du,
Yan Qin,
Jianxiu Li,
Meng Ju,
Ri-Bo Huang
Publication year - 2017
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0169080
Subject(s) - pullulanase , sensitivity (control systems) , hydrogen bond , chemistry , thermal stability , hydrogen , biochemistry , enzyme , organic chemistry , molecule , engineering , electronic engineering
A method, so called “active hydrogen bond network” (AHBN), is proposed for site-directed mutations of hydrolytic enzymes. In an enzyme the AHBN consists of the active residues, functional residues, and conservative water molecules, which are connected by hydrogen bonds, forming a three dimensional network. In the catalysis hydrolytic reactions of hydrolytic enzymes AHBN is responsible for the transportation of protons and water molecules, and maintaining the active and dynamic structures of enzymes. The AHBN of pullulanase BNPulA324 from Bacillus naganoensis was constructed based on a homologous model structure using Swiss Model Protein-modeling Server according to the template structure of pullulanase BAPulA (2WAN). The pullulanase BNPulA324 are mutated at the mutation sites selected by means of the AHBN method. Both thermal stability and pH-sensitivity of pullulanase BNPulA324 were successfully improved. The mutations at the residues located at the out edge of AHBN may yield positive effects. On the other hand the mutations at the residues inside the AHBN may deprive the bioactivity of enzymes. The AHBN method, proposed in this study, may provide an assistant and alternate tool for protein rational design and protein engineering.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here