z-logo
open-access-imgOpen Access
Renal Fibrosis mRNA Classifier: Validation in Experimental Lithium-Induced Interstitial Fibrosis in the Rat Kidney
Author(s) -
Hanspeter Marti,
Aaron Jeffs,
Andreas Scherer,
John P. Leader,
Catherine Leader,
Jennifer J. Bedford,
Robert Walker
Publication year - 2016
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0168240
Subject(s) - renal cortex , fibrosis , medulla , biology , gene expression , endocrinology , medicine , kidney , pathology , gene , biochemistry
Accurate diagnosis of fibrosis is of paramount clinical importance. A human fibrosis classifier based on metzincins and related genes (MARGS) was described previously. In this investigation, expression changes of MARGS genes were explored and evaluated to examine whether the MARGS-based algorithm has any diagnostic value in a rat model of lithium nephropathy. Male Wistar rats (n = 12) were divided into 2 groups (n = 6). One group was given a diet containing lithium (40 mmol/kg food for 7 days, followed by 60mmol/kg food for the rest of the experimental period), while a control group (n = 6) was fed a normal diet. After six months, animals were sacrificed and the renal cortex and medulla of both kidneys removed for analysis. Gene expression changes were analysed using 24 GeneChip ® Affymetrix Rat Exon 1.0 ST arrays. Statistically relevant genes (p-value<0.05, fold change>1.5, t-test) were further examined. Matrix metalloproteinase-2 (MMP2), CD44, and nephroblastoma overexpressed gene (NOV) were overexpressed in the medulla and cortex of lithium-fed rats compared to the control group. TGFβ2 was overrepresented in the cortex of lithium-fed animals 1.5-fold, and 1.3-fold in the medulla of the same animals. In Gene Set Enrichment Analysis (GSEA), both the medulla and cortex of lithium-fed animals showed an enrichment of the MARGS, TGFβ network, and extracellular matrix (ECM) gene sets, while the cortex expression signature was enriched in additional fibrosis-related-genes and the medulla was also enriched in immune response pathways. Importantly, the MARGS-based fibrosis classifier was able to classify all samples correctly. Immunohistochemistry and qPCR confirmed the up-regulation of NOV, CD44, and TGFβ2. The MARGS classifier represents a cross-organ and cross-species classifier of fibrotic conditions and may help to design a test to diagnose and to monitor fibrosis. The results also provide evidence for a common pathway in the pathogenesis of fibrosis.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here