z-logo
open-access-imgOpen Access
A Novel Non-Cumbersome Approach Towards Biosynthesis of Pectic-Oligosaccharides by Non-Aflatoxigenic Aspergillus sp. Section Flavi Strain EGY1 DSM 101520 through Citrus Pectin Fermentation
Author(s) -
Amira M. Embaby,
Ramy R. Melika,
Ahmed Hussein,
Amal H. El-Kamel,
H. S. Marey
Publication year - 2016
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0167981
Subject(s) - fermentation , strain (injury) , aspergillus , food science , biochemistry , chemistry , pectin , cellulose , biosynthesis , biology , microbiology and biotechnology , enzyme , anatomy
Pectic-Oligosaccharides (POS) have a growing potential in food and feed industries. To satisfy the demand of worldwide markets from POS and avoid the shortcomings of currently applied methodologies encountered in their preparation, the present study highlights a novel robust approach for POS biosynthesis. In the current approach, Aspergillus sp.section Flavi strain EGY1 DSM 101520 was grown on citrus pectin-based medium as a core POS production medium. POS' levels accumulated in the fungal fermentation broth were optimized through a three step sequential statistical mathematical methodology; Plackett-Burman design (PBD), Box-Behnken design (BBD) and canonical analysis. Three key determinants namely citrus pectin, peptone and NaH 2 PO 4 were pointed out by PBD to impose significant consequences (P<0.05) on the process outcome (POS' levels). Optimal levels of these key determinants along with maximal of POS' levels were set by BBD and canonical analysis to be 2.28% (w/v) citrus pectin, 0.026% (w/v) peptone and 0.28% (w/v) NaH 2 PO 4 to achieve a net amount of 1.3 g POS /2.28 g citrus pectin. Through this approach, a yield of 57% (w/w) POS of the total citrus pectin was obtained after 24 h of fungal growth on optimized citrus pectin–based medium. A fold enhancement of 13 times in POS' levels released in the fermentation fungal broth was realized by the end of the optimization strategy. This novel robust approach is considered a new insight towards POS biosynthesis via efficient, rapid and non-cumbersome procedure. To the best of authors' knowledge, the present work is the first article underlining detailed POS production from the fermentation broth of a fungus growing on citrus pectin-based medium.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here