
Intrinsic Image Decomposition via Structure-Preserving Image Smoothing and Material Recognition
Author(s) -
Ali Nadian-Ghomsheh,
Yassin Hassanian,
K. Navi
Publication year - 2016
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0166772
Subject(s) - artificial intelligence , computer vision , chromaticity , computer science , pixel , reflectivity , shading , image texture , image (mathematics) , mathematics , pattern recognition (psychology) , image processing , optics , physics , computer graphics (images)
Decoupling shading and reflectance from complex scene-images is a long-standing problem in computer vision. We introduce a framework for decomposing an image into the product of an illumination component and a reflectance component. Due to the ill-posed nature of the problem, prior information on shading and reflectance is mandatory. The proposed method adopts the premise that pixels in a region with similar chromaticity values should have the same reflectance. This assumption was used to minimize the l 2 norm of the local per-pixel reflectance gradients to extract the shading and reflectance components. To obtain smooth chromatic regions, texture was treated in a new style. Texture was removed in the first step of the algorithm and the smooth image was processed for intrinsic decomposition. In the final step, texture details were added to the intrinsic components based on the material of each pixel. In addition, user-assistance was used to further refine the results. The qualitative and quantitative evaluation on the MIT intrinsic dataset indicated that the quality of intrinsic image decomposition was improved in comparison with previous methods.