
Perfect Rainbow Tradeoff with Checkpoints Revisited
Author(s) -
Jin Hong
Publication year - 2016
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0166404
Subject(s) - computer science , hash function , rainbow , password , task (project management) , function (biology) , carry (investment) , algorithm , theoretical computer science , computer security , physics , finance , management , quantum mechanics , evolutionary biology , economics , biology
The rainbow tradeoff is an algorithm for inverting one-way functions that is widely used in practice to recover passwords from unsalted password hashes. An auxiliary technique referred to as checkpoints can be applied to the rainbow tradeoff to reduce the time taken for these inversions. Working out a rigorous theory that can explain and predict the effects of this technique involves delicate manipulations of the random function and is thus a challenging task. In this work, we compare three existing theoretical analyses of the checkpoint technique. We first demonstrate that the claims made by the three works are incompatible with each other. We then carry out experiments designed to highlight these incompatibilities, obtaining experimental evidences that show just one of the three analyses to be correct. Finally, we discuss the obscure theoretical errors made by the two inadequate analyses.