
Insulin-Like Growth Factor I Does Not Drive New Bone Formation in Experimental Arthritis
Author(s) -
Melissa N. van Tok,
Nataliya Yeremenko,
Christine A. Teitsma,
Barbara E. Kream,
Véronique L. Knaup,
Rik Lories,
Dominique Baeten,
Leonie M. van Duivenvoorde
Publication year - 2016
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0163632
Subject(s) - insulin like growth factor , arthritis , medicine , growth factor , endocrinology , receptor
Insulin like growth factor (IGF)-I can act on a variety of cells involved in cartilage and bone repair, yet IGF-I has not been studied extensively in the context of inflammatory arthritis. The objective of this study was to investigate whether IGF-I overexpression in the osteoblast lineage could lead to increased reparative or pathological bone formation in rheumatoid arthritis and/or spondyloarthritis respectively. Methods Mice overexpressing IGF-I in the osteoblast lineage (Ob-IGF-I +/- ) line 324–7 were studied during collagen induced arthritis and in the DBA/1 aging model for ankylosing enthesitis. Mice were scored clinically and peripheral joints were analysed histologically for the presence of hypertrophic chondrocytes and osteocalcin positive osteoblasts. Results 90–100% of the mice developed CIA with no differences between the Ob-IGF-I +/- and non-transgenic littermates. Histological analysis revealed similar levels of hypertrophic chondrocytes and osteocalcin positive osteoblasts in the ankle joints. In the DBA/1 aging model for ankylosing enthesitis 60% of the mice in both groups had a clinical score 1<. Severity was similar between both groups. Histological analysis revealed the presence of hypertrophic chondrocytes and osteocalcin positive osteoblasts in the toes in equal levels. Conclusion Overexpression of IGF-I in the osteoblast lineage does not contribute to an increase in repair of erosions or syndesmophyte formation in mouse models for destructive and remodeling arthritis.