
The Effect of Vector Silencing during Picornavirus Vaccination against Experimental Melanoma and Glioma
Author(s) -
Courtney S. Malo,
Danielle N. Renner,
April M. Huseby Kelcher,
Fang Jin,
Michael J. Hansen,
Kevin D. Pavelko,
Aaron J. Johnson
Publication year - 2016
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0162064
Subject(s) - antigen , glioma , immunotherapy , cytotoxic t cell , cd8 , virology , vaccination , biology , t cell , cancer immunotherapy , immunology , cancer research , tumor antigen , gene silencing , immune system , biochemistry , gene , in vitro
Virus vector-based vaccination against tumor-specific antigens remains a promising therapeutic approach to overcome the immune suppressive tumor microenvironment. However, the extent that the desired CD8 T cell response against the targeted tumor antigen is impacted by the CD8 T cell response against the virus vector is unclear. To address this question, we used picornavirus vaccination with Theiler’s murine encephalomyelitis virus (TMEV) as our vector against tumor-expressed ovalbumin (OVA 257-264 ) antigen in both the B16-OVA murine melanoma and GL261-quad cassette murine glioma models. Prior to vaccination, we employed vector silencing to inhibit the CD8 T cell response against the immunodominant TMEV antigen, VP2 121-130 . We then monitored the resulting effect on the CD8 T cell response against the targeted tumor-specific antigen, ovalbumin. We demonstrate that employing vector silencing in the context of B16-OVA melanoma does not reduce tumor burden or improve survival, while TMEV-OVA vaccination without vector silencing controls tumor burden. Meanwhile, employing vector silencing during picornavirus vaccination against the GL261-quad cassette glioma resulted in a lower frequency of tumor antigen-specific CD8 T cells. The results of this study are relevant to antigen-specific immunotherapy, in that the virus vector-specific CD8 T cell response is not competing with tumor antigen-specific CD8 T cells. Furthermore, vector silencing may have the adverse consequence of reducing the tumor antigen-specific CD8 T cell response, as demonstrated by our findings in the GL261-quad cassette model.