z-logo
open-access-imgOpen Access
Exploratory Network Meta Regression Analysis of Stroke Prevention in Atrial Fibrillation Fails to Identify Any Interactions with Treatment Effect
Author(s) -
Sarah Batson,
Alex J. Sutton,
Keith R. Abrams
Publication year - 2016
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0161864
Subject(s) - atrial fibrillation , covariate , medicine , stroke (engine) , observational study , meta analysis , meta regression , warfarin , regression analysis , intensive care medicine , physical therapy , statistics , mechanical engineering , mathematics , engineering
Background Patients with atrial fibrillation are at a greater risk of stroke and therefore the main goal for treatment of patients with atrial fibrillation is to prevent stroke from occurring. There are a number of different stroke prevention treatments available to include warfarin and novel oral anticoagulants. Previous network meta-analyses of novel oral anticoagulants for stroke prevention in atrial fibrillation acknowledge the limitation of heterogeneity across the included trials but have not explored the impact of potentially important treatment modifying covariates. Objectives To explore potentially important treatment modifying covariates using network meta-regression analyses for stroke prevention in atrial fibrillation. Methods We performed a network meta-analysis for the outcome of ischaemic stroke and conducted an exploratory regression analysis considering potentially important treatment modifying covariates. These covariates included the proportion of patients with a previous stroke, proportion of males, mean age, the duration of study follow-up and the patients underlying risk of ischaemic stroke. Results None of the covariates explored impacted relative treatment effects relative to placebo. Notably, the exploration of ‘study follow-up’ as a covariate supported the assumption that difference in trial durations is unimportant in this indication despite the variation across trials in the network. Conclusion This study is limited by the quantity of data available. Further investigation is warranted, and, as justifying further trials may be difficult, it would be desirable to obtain individual patient level data (IPD) to facilitate an effort to relate treatment effects to IPD covariates in order to investigate heterogeneity. Observational data could also be examined to establish if there are potential trends elsewhere. The approach and methods presented have potentially wide applications within any indication as to highlight the potential benefit of extending decision problems to include additional comparators outside of those of primary interest to allow for the exploration of heterogeneity.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here