z-logo
open-access-imgOpen Access
Factors Affecting the Radiosensitivity of Hexaploid Wheat to γ-Irradiation: Radiosensitivity of Hexaploid Wheat (Triticum aestivum L.)
Author(s) -
Bing Han,
Jun Gu,
Liyan Zhao,
Huijun Guo,
Yongdun Xie,
Shirong Zhao,
Xiyun Song,
Longzhi Han,
Luxiang Liu
Publication year - 2016
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0161700
Subject(s) - radiosensitivity , biology , intron , dna damage , gene , irradiation , genetics , dna , physics , nuclear physics
Understanding the radiosensitivity of plants, an important factor in crop mutation breeding programs, requires a thorough investigation of the factors that contribute to this trait. In this study, we used the highly radiosensitive wheat ( Triticum aestivum L.) variety HY1 and J411, a γ-irradiation-insensitive control, which were screened from a natural population, to examine the factors affecting radiosensitivity, including free radical content and total antioxidant capacity, as well as the expression of TaKu70 and TaKu80 (DNA repair-related genes) as measured by real-time PCR. We also investigated the alternative splicing of this gene in the wild-type wheat ecotype by sequence analysis. Free radical contents and total antioxidant capacity significantly increased upon exposure of HY1 wheat to γ-irradiation in a dose-dependent manner. By contrast, in J411, the free radical contents exhibited a similar trend, but the total antioxidant capacity exhibited a downward trend upon increasing γ-irradiation. Additionally, we detected dose-dependent increases in TaKu70 and TaKu80 expression levels in γ-irradiated HY1, while in J411, TaKu70 expression levels increased, followed by a decline. We also detected alternative splicing of TaKu70 mRNA, namely, intron retention, in HY1 but not in J411. Our findings indicate that γ-irradiation induces oxidative stress and DNA damage in hexaploid wheat, resulting in growth retardation of seedlings, and they suggest that TaKu70 may play a causal role in radiosensitivity in HY1. Further studies are required to exploit these factors to improve radiosensitivity in other wheat varieties.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here