
β-Cyclodextrin-Based Inclusion Complexation Bridged Biodegradable Self-Assembly Macromolecular Micelle for the Delivery of Paclitaxel
Author(s) -
Yanzuo Chen,
Yukun Huang,
Dongdong Qin,
Wenchao Li,
Chao Song,
Kaiyan Lou,
Wei Wang,
Feng Gao
Publication year - 2016
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0150877
Subject(s) - cyclodextrin , paclitaxel , micelle , chemistry , drug delivery , self assembly , macromolecule , biophysics , organic chemistry , aqueous solution , biochemistry , medicine , biology , surgery , chemotherapy
In this study, a novel adamantanamine-paclitaxel (AD-PTX) incorporated oligochitosan- carboxymethyl-β-cyclodextrin (CSO-g-CM-β-CD) self-assembly macromolecular (CSO-g-CM-β-CD@AD-PTX) micelle was successfully prepared in water through sonication. The formed molecules were characterized by Fourier transform infrared spectroscopy, proton nuclear magnetic resonance (NMR) spectroscopy, two-dimensional NMR, elemental analysis, and liquid chromatography-mass spectrometry, while the correspondent micelles were characterized by dynamic light scattering and transmission electron microscopy. We showed that the macromolecular micelle contained a spherical core-shell structure with a diameter of 197.1 ± 3.3 nm and zeta potential of −19.1 ± 4.3 mV. The CSO-g-CM-β-CD@AD-PTX micelle exhibited a high drug-loading efficacy up to 31.3%, as well as a critical micelle concentration of 3.4 × 10 -7 M, which indicated good stability. Additionally, the in vitro release profile of the CSO-g-CM-β-CD@AD-PTX micelle demonstrated a long-term release pattern, 63.1% of AD-PTX was released from the micelle during a 30-day period. Moreover, the CSO-g-CM-β-CD@AD-PTX micelle displayed cytotoxicity at a sub-μM scale similar to PTX in U87 MG cells, and CSO-g-CM-β-CD exhibited a good safety profile by not manifesting significant toxicity at concentrations up to 100 μM. These results indicated that β-CD-based inclusion complexation resulting in biodegradable self-assembled macromolecular micelles can be utilized as nanocarrier, and may provide a promising platform for drug delivery in the future medical applications.