z-logo
open-access-imgOpen Access
Characterization of Sin1 Isoforms Reveals an mTOR-Dependent and Independent Function of Sin1γ
Author(s) -
Yuanyang Yuan,
Bangfen Pan,
Haipeng Sun,
Guoqiang Chen,
Bing Su,
Ying Huang
Publication year - 2015
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0135017
Subject(s) - gene isoform , microbiology and biotechnology , phosphorylation , protein kinase b , chemistry , biology , biochemistry , gene
Sin1 or MAPKAP1 is a key component of mTORC2 signaling complex which is necessary for AKT phosphorylation at the S473 and T450 sites, and also for AKT downstream signaling as well. A number of Sin1 splicing variants have been reported that can produce different Sin1 isoforms due to exon skipping or alternative transcription initiation. In this report, we characterized four Sin1 isoforms, including a novel Sin1 isoform due to alternative 3’ termination of the exon 9a, termed Sin1γ. Sin1γ expression can be detected in multiple adult mouse tissues, and it encodes a C-terminal truncated protein comparing to the full length Sin1β isoform. In contrast to Sin1β, Sin1γ overexpression in Sin1 deficient mouse embryonic fibroblasts has no significant impact on mTORC2 activity or mTORC2 subunits protein level, although it still can interact with mTORC2 components. More interestingly, Sin1γ was detected in a specific cytosolic location with a distinct feature in structure, and its localization was transiently disrupted during cell cycle. Therefore, Sin1γ is a novel Sin1 isoform and may have distinct properties in cell signaling and intracellular localization from other Sin1 isoforms.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here