z-logo
open-access-imgOpen Access
Dose-Dependent ATP Depletion and Cancer Cell Death following Calcium Electroporation, Relative Effect of Calcium Concentration and Electric Field Strength
Author(s) -
Emilie Louise Hansen,
Esin B. Sözer,
Stefania Romeo,
Stine Krog Frandsen,
P. Thomas Vernier,
Julie Gehl
Publication year - 2015
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0122973
Subject(s) - calcium , electroporation , calcium in biology , intracellular , extracellular , viability assay , fura 2 , biophysics , cancer cell , adenosine triphosphate , chemistry , biology , biochemistry , cytosol , cell , medicine , cancer , gene , enzyme
Background Electroporation, a method for increasing the permeability of membranes to ions and small molecules, is used in the clinic with chemotherapeutic drugs for cancer treatment (electrochemotherapy). Electroporation with calcium causes ATP (adenosine triphosphate) depletion and cancer cell death and could be a novel cancer treatment. This study aims at understanding the relationship between applied electric field, calcium concentration, ATP depletion and efficacy. Methods In three human cell lines — H69 (small-cell lung cancer), SW780 (bladder cancer), and U937 (leukaemia), viability was determined after treatment with 1, 3, or 5 mM calcium and eight 99 μs pulses with 0.8, 1.0, 1.2, 1.4 or 1.6 kV/cm. Fitting analysis was applied to quantify the cell-killing efficacy in presence of calcium. Post-treatment intracellular ATP was measured in H69 and SW780 cells. Post-treatment intracellular ATP was observed with fluorescence confocal microscopy of quinacrine-labelled U937 cells. Results Both H69 and SW780 cells showed dose-dependent (calcium concentration and electric field) decrease in intracellular ATP (p<0.05) and reduced viability. The 50% effective cell kill was found at 3.71 kV/cm (H69) and 3.28 kV/cm (SW780), reduced to 1.40 and 1.15 kV/cm (respectively) with 1 mM calcium (lower EC50 for higher calcium concentrations). Quinacrine fluorescence intensity of calcium-electroporated U937 cells was one third lower than in controls (p<0.0001). Conclusions Calcium electroporation dose-dependently reduced cell survival and intracellular ATP. Increasing extracellular calcium allows the use of a lower electric field. General Significance This study supports the use of calcium electroporation for treatment of cancer and possibly lowering the applied electric field in future trials.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here