z-logo
open-access-imgOpen Access
Molecular Interaction of a Kinase Inhibitor Midostaurin with Anticancer Drug Targets, S100A8 and EGFR: Transcriptional Profiling and Molecular Docking Study for Kidney Cancer Therapeutics
Author(s) -
Zeenat Mirza,
Hans-Juergen Schulten,
Hasan Ma Farsi,
Jaudah Al-Maghrabi,
Mamdooh Gari,
Adeel Chaudhary,
Adel M. Abuzenadah,
Mohammed AlQahtani,
Sajjad Karim
Publication year - 2015
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0119765
Subject(s) - drug , profiling (computer programming) , egfr inhibitors , druggability , docking (animal) , s100a8 , cancer research , pharmacology , computational biology , biology , medicine , cancer , gene , genetics , epidermal growth factor receptor , nursing , computer science , operating system
The S100A8 and epidermal growth factor receptor (EGFR) proteins are proto-oncogenes that are strongly expressed in a number of cancer types. EGFR promotes cellular proliferation, differentiation, migration and survival by activating molecular pathways. Involvement of proinflammatory S100A8 in tumor cell differentiation and progression is largely unclear and not studied in kidney cancer (KC). S100A8 and EGFR are potential therapeutic biomarkers and anticancer drug targets for KC. In this study, we explored molecular mechanisms of interaction profiles of both molecules with potential anticancer drugs. We undertook transcriptional profiling in Saudi KCs using Affymetrix HuGene 1.0 ST arrays. We identified 1478 significantly expressed genes, including S100A8 and EGFR overexpression, using cut-off p value <0.05 and fold change ≥2. Additionally, we compared and confirmed our findings with expression data available at NCBI’s GEO database. A significant number of genes associated with cancer showed involvement in cell cycle progression, DNA repair, tumor morphology, tissue development, and cell survival. Atherosclerosis signaling, leukocyte extravasation signaling, notch signaling, and IL-12 signaling were the most significantly disrupted signaling pathways. The present study provides an initial transcriptional profiling of Saudi KC patients. Our analysis suggests distinct transcriptomic signatures and pathways underlying molecular mechanisms of KC progression. Molecular docking analysis revealed that the kinase inhibitor "midostaurin" has amongst the selected drug targets, the best ligand properties to S100A8 and EGFR, with the implication that its binding inhibits downstream signaling in KC. This is the first structure-based docking study for the selected protein targets and anticancer drug, and the results indicate S100A8 and EGFR as attractive anticancer targets and midostaurin with effective drug properties for therapeutic intervention in KC.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here