
Quantitative Analysis of Respiration-Related Movement for Abdominal Artery in Multiphase Hepatic CT
Author(s) -
Yang-Hsien Lin,
Shih-Min A. Huang,
Chin-Yi Huang,
Yun-Niang Tu,
ShingHong Liu,
Tzung-Chi Huang
Publication year - 2014
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0114222
Subject(s) - optical flow , medicine , artery , radiology , respiration , nuclear medicine , anatomy , artificial intelligence , computer science , image (mathematics)
Objectives Respiration-induced motion in the liver causes potential errors on the measurement of contrast medium in abdominal artery from multiphase hepatic CT scans. In this study, we investigated the use of hepatic CT images to quantitatively estimate the abdominal artery motion due to respiration by optical flow method. Materials and Methods A total of 132 consecutive patients were included in our patient cohort. We apply the optical flow method to compute the motion of the abdominal artery due to respiration. Results The minimum and maximum displacements of the abdominal artery motion were 0.02 and 30.87 mm by manual delineation, 0.03 and 40.75 mm calculated by optical flow method, respectively. Both high consistency and correlation between the present method and the physicians’ manual delineations were acquired with the regression equation of movement, y = 0.81x+0.25, r = 0.95, p <0.001. Conclusion We estimated the motion of abdominal artery due to respiration using the optical flow method in multiphase hepatic CT scans and the motion estimations were validated with the visualization of physicians. The quantitative analysis of respiration-related movement of abdominal artery could be used for motion correction in the measurement of contrast medium passing though abdominal artery in multiphase CT liver scans.