Open Access
A Challenge for the Seed Mixture Refuge Strategy in Bt Maize: Impact of Cross-Pollination on an Ear-Feeding Pest, Corn Earworm
Author(s) -
Fei Yang,
David L. Kerns,
Graham P. Head,
B. R. Leonard,
Ronnie Levy,
Ying Niu,
Fangneng Huang
Publication year - 2014
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0112962
Subject(s) - helicoverpa zea , biology , bacillus thuringiensis , agronomy , pest analysis , sowing , genetically modified maize , pollination , noctuidae , horticulture , ecology , genetically modified crops , pollen , biochemistry , transgene , genetics , bacteria , gene
To counter the threat of insect resistance, Bacillus thuringiensis (Bt) maize growers in the U.S. are required to plant structured non-Bt maize refuges. Concerns with refuge compliance led to the introduction of seed mixtures, also called RIB (refuge-in-the-bag), as an alternative approach for implementing refuge for Bt maize products in the U.S. Maize Belt. A major concern in RIB is cross-pollination of maize hybrids that can cause Bt proteins to be present in refuge maize kernels and negatively affect refuge insects. Here we show that a mixed planting of 5% nonBt and 95% Bt maize containing the SmartStax traits expressing Cry1A.105, Cry2Ab2 and Cry1F did not provide an effective refuge for an important above-ground ear-feeding pest, the corn earworm, Helicoverpa zea (Boddie). Cross-pollination in RIB caused a majority (>90%) of refuge kernels to express ≥ one Bt protein. The contamination of Bt proteins in the refuge ears reduced neonate-to-adult survivorship of H. zea to only 4.6%, a reduction of 88.1% relative to larvae feeding on ears of pure non-Bt maize plantings. In addition, the limited survivors on refuge ears had lower pupal mass and took longer to develop to adults.