
Cross-Talk between Ciliary Epithelium and Trabecular Meshwork Cells In-Vitro: A New Insight into Glaucoma
Author(s) -
Natalie Lerner,
Elie BeitYannai
Publication year - 2014
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0112259
Subject(s) - trabecular meshwork , mapk/erk pathway , microbiology and biotechnology , kinase , cell culture , biology , p38 mitogen activated protein kinases , phosphatase , phosphorylation , chemistry , glaucoma , genetics , neuroscience
Purpose It is assumed that the non-pigmented ciliary epithelium plays a role in regulating intraocular pressure via its neuroendocrine activities. To test this hypothesis, we investigated the effect on a human trabecular meshwork (TM) cell line (NTM) of co-culture with a human non-pigmented ciliary epithelium cell line (ODM-2). Methods The cellular cross-talk between ODM-2 and NTM cells was studied in a co-culture system in which the two cell types were co-cultured for 5 to 60 min or 2, 4 and 8 h and then removed from the co-culture and analyzed. Analyses of the ERK and p38 mitogen-activated protein kinase (MAPK) pathways and of the activity of TM phosphatases and matrix metalloproteins (MMPs) were performed. Acid and alkaline phosphatase activity was determined by the DiFMUP (6, 8-difluoro-4-methylumbelliferyl phosphate) assay. MMP levels were determined by gelatin zymography. Results Exposure of NTM cells to ODM-2 cells led to the activation of the MAPK signal transduction pathways in NTM cells within 5 min of co-culture. Phosphorylation of ERK1/ERK2 and p38 peaked at 10 and 15 min and then decreased over time. Interaction between ODM-2 and NTM cells promoted the expression of MMP-9 in the NTM cells after 4 h of co-culture. Conclusions Our findings provide support for the hypothesis that crosstalk does indeed take place between ODM-2 and NTM cells. Future studies should be designed to determine the relationship between the MMP system, MAPK kinases and phosphatases. Manipulation of these signaling molecules and the related NTM signal transduction pathways may provide targets for developing improved treatments for glaucoma.