z-logo
open-access-imgOpen Access
Mice in Bion-M 1 Space Mission: Training and Selection
Author(s) -
Alexander Andreev-Andrievskiy,
Anfisa Popova,
Richard Boyle,
Jeffrey R. Alberts,
Борис Шенкман,
О. Л. Виноградова,
Oleg Dolgov,
Konstantin V. Anokhin,
Daria Tsvirkun,
P. E. Soldatov,
T. L. Nemirovskaya,
Е.А. Ilyin,
Vladimir Sychev
Publication year - 2014
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0104830
Subject(s) - adaptation (eye) , in vivo , biology , aeronautics , zoology , neuroscience , microbiology and biotechnology , engineering
After a 16-year hiatus, Russia has resumed its program of biomedical research in space, with the successful 30-day flight of the Bion-M 1 biosatellite (April 19–May 19, 2013). The principal species for biomedical research in this project was the mouse. This paper presents an overview of the scientific goals, the experimental design and the mouse training/selection program. The aim of mice experiments in the Bion-M 1 project was to elucidate cellular and molecular mechanisms, underlying the adaptation of key physiological systems to long-term exposure in microgravity. The studies with mice combined in vivo measurements, both in flight and post-flight (including continuous blood pressure measurement), with extensive in vitro studies carried out shortly after return of the mice and in the end of recovery study. Male C57/BL6 mice group housed in space habitats were flown aboard the Bion-M 1 biosatellite, or remained on ground in the control experiment that replicated environmental and housing conditions in the spacecraft. Vivarium control groups were used to account for housing effects and possible seasonal differences. Mice training included the co-adaptation in housing groups and mice adaptation to paste food diet. The measures taken to co-adapt aggressive male mice in housing groups and the peculiarities of “space” paste food are described. The training program for mice designated for in vivo studies was broader and included behavioral/functional test battery and continuous behavioral measurements in the home-cage. The results of the preliminary tests were used for the selection of homogenous groups. After the flight, mice were in good condition for biomedical studies and displayed signs of pronounced disadaptation to Earth's gravity. The outcomes of the training program for the mice welfare are discussed. We conclude that our training program was effective and that male mice can be successfully employed in space biomedical research.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here