
Oxygen-Carbon Nanotubes as a Chemotherapy Sensitizer for Paclitaxel in Breast Cancer Treatment
Author(s) -
Yongkun Wang,
Chuanying Wang,
Yuxiang Jia,
Xugeng Cheng,
Lin Q,
Mingjie Zhu,
Yin Lu,
Longlong Ding,
Zhen Weng,
Kangning Wu
Publication year - 2014
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0104209
Subject(s) - paclitaxel , breast cancer , chemotherapy , medicine , oncology , oxygen , cancer , cancer research , chemistry , organic chemistry
Objective To study the in vivo and in vitro effects of adding oxygen carbon nanotubes (CNTs) to chemotherapy for breast cancer. Methods MCF-7 and SK-BR-3 breast cancer cells were co-cultured with paclitaxel and then exposed to oxygen-CNTs under hypoxic conditions. Cell proliferation, viability, and apoptosis rate were analyzed. Hypoxia-inducible factor-1 alpha (HIF-1α) expression was measured using reverse transcription-polymerase chain reaction (RT-PCR) and western blot. Nude mice were used as a human breast cancer model to explore the impact of oxygen-CNTs on the in vivo chemotherapeutic effect of paclitaxel. Results Oxygen-CNTs had no significant effects on the growth of breast cancer cells under normoxia and hypoxia. However, in the hypoxic environment, oxygen-CNTs significantly enhanced the inhibitory effect of paclitaxel on cell proliferation, as well as the apoptosis rate. Under hypoxia, downregulation of HIF-1α and upregulation of caspase-3, caspase-8, caspase-9, LC3 and Beclin-1 were observed when paclitaxel was combined with oxygen-CNT. Furthermore, addition of oxygen-CNTs to chemotherapy was found to significantly reduce tumor weight in the tumor-bearing mice model. Conclusions Oxygen-CNTs can significantly increase the chemotherapeutic effect of paclitaxel on breast cancer cells. Oxygen-CNTs may be a potential chemosensitizer in breast cancer therapy.