z-logo
open-access-imgOpen Access
Estrogen-Mediated Renoprotection following Cardiac Arrest and Cardiopulmonary Resuscitation Is Robust to GPR30 Gene Deletion
Author(s) -
Michael P. Hutchens,
Yasuharu Kosaka,
Wenri Zhang,
T. Fujiyoshi,
Stephanie J. Murphy,
Nabil J. Alkayed,
Sharon Anderson
Publication year - 2014
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0099910
Subject(s) - cardiopulmonary resuscitation , gper , estrogen , medicine , cardiology , resuscitation , estrogen receptor , anesthesia , cancer , breast cancer
Introduction Acute kidney injury is a serious,sexually dimorphic perioperative complication, primarily attributed to hypoperfusion. We previously found that estradiol is renoprotective after cardiac arrest and cardiopulmonary resuscitation in ovariectomized female mice. Additionally, we found that neither estrogen receptor alpha nor beta mediated this effect. We hypothesized that the G protein estrogen receptor (GPR30) mediates the renoprotective effect of estrogen. Methods Ovariectomized female and gonadally intact male wild-type and GPR30 gene-deleted mice were treated with either vehicle or 17β-estradiol for 7 days, then subjected to cardiac arrest and cardiopulmonary resuscitation. Twenty four hours later, serum creatinine and urea nitrogen were measured, and histologic renal injury was evaluated by unbiased stereology. Results In both males and females, GPR30 gene deletion was associated with reduced serum creatinine regardless of treatment. Estrogen treatment of GPR30 gene-deleted males and females was associated with increased preprocedural weight. In ovariectomized female mice, estrogen treatment did not alter resuscitation, but was renoprotective regardless of GPR30 gene deletion. In males, estrogen reduced the time-to-resuscitate and epinephrine required. In wild-type male mice, serum creatinine was reduced, but neither serum urea nitrogen nor histologic outcomes were affected by estrogen treatment. In GPR30 gene-deleted males, estrogen did not alter renal outcomes. Similarly, renal injury was not affected by G1 therapy of ovariectomized female wild-type mice. Conclusion Treatment with 17β-estradiol is renoprotective after whole-body ischemia-reperfusion in ovariectomized female mice irrespective of GPR30 gene deletion. Treatment with the GPR30 agonist G1 did not alter renal outcome in females. We conclude GPR30 does not mediate the renoprotective effect of estrogen in ovariectomized female mice. In males, estrogen therapy was not renoprotective. Estrogen treatment of GPR30 gene-deleted mice was associated with increased preprocedural weight in both sexes. Of significance to further investigation, GPR30 gene deletion was associated with reduced serum creatinine, regardless of treatment.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here