
Development and Characterization of an Antibody-Labeled Super-Paramagnetic Iron Oxide Contrast Agent Targeting Prostate Cancer Cells for Magnetic Resonance Imaging
Author(s) -
D. Gregory Bates,
Suraj Abraham,
Michael J. Campbell,
Ingeborg Zehbe,
Laura Curiel
Publication year - 2014
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0097220
Subject(s) - lncap , chemistry , flow cytometry , biophysics , alexa fluor , monoclonal antibody , iron oxide nanoparticles , microbiology and biotechnology , prostate cancer , antibody , cancer research , iron oxide , cancer , biology , medicine , immunology , fluorescence , physics , organic chemistry , quantum mechanics
In this study we developed, characterized and validated in vitro a functional superparagmagnetic iron-oxide based magnetic resonance contrast agent by conjugating a commercially available iron oxide nanoparticle, Molday ION Rhodamine-B Carboxyl (MIRB), with a deimmunized mouse monoclonal antibody (muJ591) targeting prostate-specific membrane antigen (PSMA). This functional contrast agent is intended for the specific and non-invasive detection of prostate cancer cells that are PSMA positive, a marker implicated in prostate tumor progression and metastasis. The two-step carbodiimide reaction used to conjugate the antibody to the nanoparticle was efficient and we obtained an elemental iron content of 1958±611 per antibody. Immunofluorescence microscopy and flow cytometry showed that the conjugated muJ591:MIRB complex specifically binds to PSMA-positive (LNCaP) cells. The muJ591:MIRB complex reduced cell adhesion and cell proliferation on LNCaP cells and caused apoptosis as tested by Annexin V assay, suggesting anti-tumorigenic characteristics. Measurements of the T2 relaxation time of the muJ591:MIRB complex using a 400 MHz Innova NMR and a multi-echo spin-echo sequence on a 3T MRI (Achieva, Philips) showed a significant T2 relaxation time reduction for the muJ591:MIRB complex, with a reduced T2 relaxation time as a function of the iron concentration. PSMA-positive cells treated with muJ591:MIRB showed a significantly shorter T2 relaxation time as obtained using a 3T MRI scanner. The reduction in T2 relaxation time for muJ591:MIRB, combined with its specificity against PSMA+LNCaP cells, suggest its potential as a biologically-specific MR contrast agent.