Open Access
Loss of Function of Endothelin-2 Leads to Reduced Ovulation and CL Formation
Author(s) -
Joseph A. Cacioppo,
Sang Wook Oh,
Hey Young Kim,
Jongki Cho,
Po Ching Lin,
Masashi Yanagisawa,
Che Myong Ko
Publication year - 2014
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0096115
Subject(s) - ovulation , corpus luteum , endocrinology , medicine , biology , endothelin 1 , in vivo , receptor , ovary , chemistry , hormone , microbiology and biotechnology
Endothelin-2 (EDN2), a potent vasoconstrictive peptide, is transiently produced by periovulatory follicles at the time of ovulation when corpus luteum (CL) formation begins. EDN2 induces contraction of ovarian smooth muscles ex vivo via an endothelin receptor A-mediated pathway. In this study, we aimed to determine if EDN2 is required for normal ovulation and subsequent CL formation in?vivo . In the ovaries of a mouse model that globally lacks the Edn2 gene ( Edn2 knockout mouse; Edn2KO), histology showed that post-pubertal Edn2KO mice possess follicles of all developmental stages, but no corpora lutea. When exogenous gonadotropins were injected to induce super-ovulation, Edn2KO mice exhibited significantly impaired ovulation and CL formation compared to control littermates. Edn2KO ovaries that did ovulate in response to gonadotropins did not contain histologically and functionally identifiable CL. Intra-ovarian injection of EDN2 peptide results suggest partial induction of ovulation in Edn2KO mice. Endothelin receptor antagonism in wild type mice similarly disrupted ovulation, CL formation, and progesterone secretion. Overall, this study suggests that EDN2 is necessary for normal ovulation and CL formation.