z-logo
open-access-imgOpen Access
Role of Rip2 in Development of Tumor-Infiltrating MDSCs and Bladder Cancer Metastasis
Author(s) -
Hanwei Zhang,
Arnold I. Chin
Publication year - 2014
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0094793
Subject(s) - cancer research , tumor microenvironment , paracrine signalling , metastasis , tumor progression , epithelial–mesenchymal transition , autocrine signalling , cancer , cancer cell , medicine , biology , immunology , receptor , tumor cells
Tumor invasion and metastases represent a complex series of molecular events that portends a poor prognosis. The contribution of inflammatory pathways mediating this process is not well understood. Nod-like receptors (NLRs) of innate immunity function as intracellular sensors of pathogen motifs and danger molecules. We propose a role of NLRs in tumor surveillance and in programming tumor-infiltrating lymphocytes (TILs). In this study, we examined the downstream serine/threonine and tyrosine kinase Rip2 in a murine model of bladder cancer. In Rip2-deficient C57Bl6 mice, larger orthotopic MB49 tumors developed with more numerous and higher incidence of metastases compared to wild-type controls. As such, increased tumor infiltration of CD11b + Gr1 hi myeloid-derived suppressor cells (MDSCs) with concomitant decrease in T cells and NK cells were observed in Rip2-deficient tumor bearing animals using orthotopic and subcutaneous tumor models. Rip2-deficient tumors showed enhanced epithelial-to-mesenchymal transition, with elevated expression of zeb1 , zeb2 , twist , and snail in the tumor microenvironment. We found that the absence of Rip2 plays an intrinsic role in fostering the development of granulocytic MDSCs by an autocrine and paracrine effect of granulocytic colony stimulating factor (G-CSF) expression. Our findings suggest that NLR pathways may be a novel modality to program TILs and influence tumor metastases.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here