z-logo
open-access-imgOpen Access
Decreased Core-Fucosylation Contributes to Malignancy in Gastric Cancer
Author(s) -
Yunpeng Zhao,
Xinyun Xu,
Meng Fang,
Hao Wang,
Qian You,
Chenju Yi,
Jun Ho Ji,
Xing Gu,
Pingting Zhou,
Cheng Cheng,
Chunfang Gao
Publication year - 2014
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0094536
Subject(s) - fucosylation , western blot , microbiology and biotechnology , cancer , blot , chemistry , biology , fucose , cancer research , biochemistry , glycoprotein , genetics , gene
The object of the study is to identify N-glycan profiling changes associated with gastric cancer and explore the impact of core-fucosylation on biological behaviors of human gastric cancer cells. A total of 244 subjects including gastric cancer, gastric ulcer and healthy control were recruited. N-glycan profiling from serum and total proteins in gastric tissues was analyzed by DNA sequencer-assisted fluorophore-assisted capillary electrophoresis. The abundance of total core-fucosylated residues and the expression of enzymes involved in core-fucosylation were analyzed with lectin blot, quantitative reverse transcription-polymerase chain reaction, western blot, Immunohistochemical staining and lectin-histochemical staining. The recombinant plasmids of GDP-fucose transporter and α-1,6-fucosyltransferase (Fut8) were constructed and transfected into gastric cancer cell lines BGC-823 and SGC-7901. CCK-8 and wound healing assay were used to assess the functional impact of core-fucosylation modulation on cell proliferation and migration. Characteristic serum N-glycan profiles were found in gastric cancer. Compared with the healthy control, a trianntenary structure abundance, peak 9 (NA3Fb), was increased significantly in gastric cancer, while the total abundance of core-fucosylated residues (sumfuc) was decreased. Core-fucosylated structures, peak6(NA2F) and peak7(NA2FB) were deceased in gastric tumor tissues when compared with that in adjacent non-tumor tissues. Consistently, lens culinaris agglutinin (LCA)-binding proteins were decreased significantly in sera of gastric cancer, and protein level of Fut8 was decreased significantly in gastric tumor tissues compared with that in adjacent non-tumor tissues. Upregulation of GDP-Tr and Fut8 could inhibit proliferation, but had no significant influence on migration of BGC-823 and SGC-7901 cells. Core-fucosylation is down regulated in gastric cancer. Upregulation of core-fucosylation could inhibit proliferation of the human gastric cancer cells.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here