
Increased Constituent Ratios of Klebsiella sp., Acinetobacter sp., and Streptococcus sp. and a Decrease in Microflora Diversity May Be Indicators of Ventilator-Associated Pneumonia: A Prospective Study in the Respiratory Tracts of Neonates
Author(s) -
Wei Lu,
Jialin Yu,
Qing Ai,
Dong Liu,
Chao Song,
Luquan Li
Publication year - 2014
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0087504
Subject(s) - acinetobacter , ventilator associated pneumonia , microbiology and biotechnology , biology , klebsiella , serratia , streptococcus , pneumonia , medicine , bacteria , antibiotics , pseudomonas , biochemistry , genetics , escherichia coli , gene
Ventilator-associated pneumonia (VAP) is a common complication and cause of death in neonates on mechanical ventilation. However, it is difficult to define the causes of VAP. To understand the causes of VAP, we undertook a prospective study based on the diversity of the microflora in VAP. The experimental group consisted of newborns who suffered from respiratory distress syndrome (RDS) and VAP, while the control group suffered from RDS without VAP. Sputa were collected within 1, 3, and 5 days of ventilation and were divided into six groups. DNA was extracted from the samples, and the 16S rDNA was PCR amplified, separated using denaturing gradient gel electrophoresis (DGGE), cloned and sequenced. The resulting sequences were compared using BLAST. The DGGE pictures were measured, and the richness, Shannon-Wiener index, and cluster maps were analyzed. No differences were found regarding the constituent ratio of any genus between the Non-VAP and VAP group within 1 day after intubation. After 1 to 3 days, the constituent ratios of Klebsiella sp. , Acinetobacter sp ., and Streptococcus sp. in the VAP group were higher than those in the Non-VAP group, and the ratios of Serratia sp. and Achromobacter sp. were lower. After 3 to 5 days, the ratios of Klebsiella sp. , Acinetobacter sp., Serratia sp., and Achromobacter sp. were lower than those in the Non-VAP group. The richness and Shannon-Wiener index of the Non-VAP group were higher than those of the VAP group from 1 to 3 days after intubation, while no differences were found within 1 day and from 3 to 5 days. We conclude that during the first three days of intubation, the microflora diversity in the lower respiratory tract was reduced due to VAP, and the greater constituent ratios of Klebsiella sp. , Acinetobacter sp., and Streptococcus sp. in the sputum may be indicators of VAP.