
Evaluation of a Cost Effective In-House Method for HIV-1 Drug Resistance Genotyping Using Plasma Samples
Author(s) -
Devidas N. Chaturbhuj,
Amit Nirmalkar,
Ramesh Paranjape,
Srikanth Tripathy
Publication year - 2014
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0087441
Subject(s) - genotyping , reproducibility , viral load , hiv drug resistance , drug resistance , human immunodeficiency virus (hiv) , virology , gold standard (test) , genotype , biology , medicine , genetics , chemistry , antiretroviral therapy , chromatography , gene
Objectives Validation of a cost effective in-house method for HIV-1 drug resistance genotyping using plasma samples. Design The validation includes the establishment of analytical performance characteristics such as accuracy, reproducibility, precision and sensitivity. Methods The accuracy was assessed by comparing 26 paired Virological Quality Assessment (VQA) proficiency testing panel sequences generated by in-house and ViroSeq Genotyping System 2.0 (Celera Diagnostics, US) as a gold standard. The reproducibility and precision were carried out on five samples with five replicates representing multiple HIV-1 subtypes (A, B, C) and resistance patterns. The amplification sensitivity was evaluated on HIV-1 positive plasma samples (n = 88) with known viral loads ranges from 1000–1.8 million RNA copies/ml. Results Comparison of the nucleotide sequences generated by ViroSeq and in-house method showed 99.41±0.46 and 99.68±0.35% mean nucleotide and amino acid identity respectively. Out of 135 Stanford HIVdb listed HIV-1 drug resistance mutations, partial discordance was observed at 15 positions and complete discordance was absent. The reproducibility and precision study showed high nucleotide sequence identities i.e. 99.88±0.10 and 99.82±0.20 respectively. The in-house method showed 100% analytical sensitivity on the samples with HIV-1 viral load >1000 RNA copies/ml. The cost of running the in-house method is only 50% of that for ViroSeq method (112$ vs 300$), thus making it cost effective. Conclusions The validated cost effective in-house method may be used to collect surveillance data on the emergence and transmission of HIV-1 drug resistance in resource limited countries. Moreover, the wide applications of a cost effective and validated in-house method for HIV-1 drug resistance testing will facilitate the decision making for the appropriate management of HIV infected patients.