
Analysis of Resin-Dentin Interface Morphology and Bond Strength Evaluation of Core Materials for One Stage Post-Endodontic Restorations
Author(s) -
Kerstin Bitter,
Christin Gläser,
Konrad Neumann,
Uwe Blunck,
Roland Frankenberger
Publication year - 2014
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0086294
Subject(s) - bond strength , dentin , materials science , post and core , root canal , adhesive , post hoc , dentistry , molar , smear layer , composite material , biomedical engineering , crown (dentistry) , layer (electronics) , medicine
Purpose Restoration of endodontically treated teeth using fiber posts in a one-stage procedure gains more popularity and aims to create a secondary monoblock. Data of detailed analyses of so called “post-and-core-systems” with respect to morphological characteristics of the resin-dentin interface in combination with bond strength measurements of fiber posts luted with these materials are scarce. The present study aimed to analyze four different post-and-core-systems with two different adhesive approaches (self-etch and etch-and-rinse). Materials and Methods Human anterior teeth (n = 80) were endodontically treated and post space preparations and post placement were performed using the following systems: Rebilda Post/Rebilda DC/Futurabond DC (Voco) (RB), Luxapost/Luxacore Z/Luxabond Prebond and Luxabond A+B (DMG) (LC), X Post/Core X Flow/XP Bond and Self Cure Activator (Dentsply DeTrey) (CX), FRC Postec/MultiCore Flow/AdheSE DC (Ivoclar Vivadent) (MC). Adhesive systems and core materials of 10 specimens per group were labeled using fluorescent dyes and resin-dentin interfaces were analyzed using Confocal Laser Scanning Microscopy (CLSM). Bond strengths were evaluated using a push-out test. Data were analyzed using repeated measurement ANOVA and following post-hoc test. Results CLSM analyses revealed significant differences between groups with respect to the factors hybrid layer thickness (p<0.0005) and number of resin tags (p = 0.02; ANOVA). Bond strength was significantly affected by core material (p = 0.001), location inside the root canal (p<0.0005) and incorporation of fluorescent dyes (p = 0.036; ANOVA). CX [7.7 (4.4) MPa] demonstrated significantly lower bond strength compared to LC [14.2 (8.7) MPa] and RB [13.3 (3.7) MPa] (p<0.05; Tukey HSD) but did not differ significantly from MC [11.5 (3.5) MPa]. Conclusion It can be concluded that bond strengths inside the root canal were not affected by the adhesive approach of the post-and-core-system. All systems demonstrated homogenous hybrid layer formation and penetration into the dentinal tubules in spite of the complicating conditions for adhesion inside the root canal.