
Evaluation of Anti-A/Udorn/307/1972 Antibody Specificity to Influenza A/H3N2 Viruses Using an Evanescent-Field Coupled Waveguide-Mode Sensor
Author(s) -
Subash C.B. Gopinath,
Kunio Awazu,
Makoto Fujimaki,
Kazufumi Shimizu
Publication year - 2013
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0081396
Subject(s) - polyclonal antibodies , virology , influenza a virus subtype h5n1 , hemagglutinin (influenza) , antibody , biology , hemagglutination assay , influenza a virus , virus , immunology , titer
Discrimination of closely related strains is a key issue, particularly for infectious diseases whose incidence fluctuates according to variations in the season and evolutionary changes. Among infectious diseases, influenza viral infections are a worldwide cause of pandemic disease and mortality. With the emergence of different influenza strains, it is vital to develop a method using antibodies that can differentiate between viral types and subtypes. Ideally, such a system would also be user friendly. In this study, a polyclonal antibody generated against A/Udorn/307/1972 (H3N2) was used as a probe to distinguish between influenza H3N2 viruses based on the interaction between the antibody and hemagglutinin, demonstrating its applicability for viral discrimination. Clear discrimination was demonstrated using an evanescent-field-coupled waveguide-mode sensor, which has appealing characteristics over other methods in the viewpoint of improving the sensitivity, measurement time, portability and usability. Further supporting evidence was obtained using enzyme-linked immunosorbent assays, hemagglutination-inhibition assays, and infectivity neutralization assays. The results obtained indicate that the polyclonal antibody used here is a potential probe for distinguishing influenza viruses and, with the aid of a handheld sensor it could be used for influenza surveillance.