
Information Transmission in a Neuron-Astrocyte Coupled Model
Author(s) -
Jun Tang,
Junpeng Luo,
Jun Ma
Publication year - 2013
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0080324
Subject(s) - astrocyte , bursting , neuron , information transmission , neuroscience , coupling (piping) , biological system , transmission (telecommunications) , physics , coupling strength , computer science , biophysics , biology , materials science , central nervous system , telecommunications , computer network , metallurgy , condensed matter physics
A coupled model containing two neurons and one astrocyte is constructed by integrating Hodgkin-Huxley neuronal model and Li-Rinzel calcium model. Based on this hybrid model, information transmission between neurons is studied numerically. Our results show that when the successive spikes are produced in neuron 1 (N1), the bursting-like spikes (BLSs) occur in two neurons simultaneously during the spikes being transferred to neuron 2 (N2). The existence of the astrocyte and a higher expression level of mGluRs facilitate the occurrence of BLSs, but the rate of occurrence is not sensitive to the parameters. Furthermore, time delay τ occurs during the information transmission, and τ is almost independent of the effect of the astrocyte. Additionally, we found that low coupling strength may result in the distortion of the information, and this distortion is also proven to be almost independent of the astrocyte.