
The Fosfomycin Resistance Gene fosB3 Is Located on a Transferable, Extrachromosomal Circular Intermediate in Clinical Enterococcus faecium Isolates
Author(s) -
Xiaogang Xu,
ChunHui Chen,
Ding Lin,
Qinglan Guo,
Fupin Hu,
Demei Zhu,
Guanghui Li,
Minggui Wang
Publication year - 2013
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0078106
Subject(s) - fosfomycin , microbiology and biotechnology , biology , enterococcus faecium , extrachromosomal dna , plasmid , gene , genetics , antibiotics
Some VanM-type vancomycin-resistant Enterococcus faecium isolates from China are also resistant to fosfomycin. To investigate the mechanism of fosfomycin resistance in these clinical isolates, antimicrobial susceptibility testing, filter-mating, Illumina/Solexa sequencing, inverse PCR and fosfomycin resistance gene cloning were performed. Three E. faecium clinical isolates were highly resistant to fosfomycin and vancomycin with minimal inhibitory concentrations (MICs) >1024 µg/ml and >256 µg/ml, respectively. The fosfomycin and vancomycin resistance of these strains could be co-transferred by conjugation. They carried a fosfomycin resistance gene fosB encoding a protein differing by one or two amino acids from FosB, which is encoded on staphylococcal plasmids. Accordingly, the gene was designated fosB3. The fosB3 gene was cloned into pMD19-T, and transformed into E. coli DH5α. The fosfomycin MIC for transformants with fosB3 was 750-fold higher than transformants without fosB3 . The fosB3 gene could be transferred by an extrachromosomal circular intermediate. The results indicate that the fosB3 gene is transferable, can mediate high level fosfomycin resistance in both Gram-positive and Gram-negative bacteria, and can be located on a circular intermediate.