
A Meta Analysis and Hierarchical Classification of HU-Based Atherosclerotic Plaque Characterization Criteria
Author(s) -
Wisnumurti Kristanto,
Peter M. A. van Ooijen,
Marijke C. Jansen-van der Weide,
Rozemarijn Vliegenthart,
Matthijs Oudkerk
Publication year - 2013
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0073460
Subject(s) - meta analysis , vulnerable plaque , medicine , computational biology , biology
Background Many computed tomography (CT) studies have reported that lipid-rich, presumably rupture-prone atherosclerotic plaques can be characterized according to their Hounsfield Unit (HU) value. However, the published HU-based characterization criteria vary considerably. The present study aims to systematically analyze these values and empirically derive a hierarchical classification of the HU-based criteria which can be referred in clinical situation. Material and Methods A systematic search in PubMed and Embase for publications with HU-criteria to characterize lipid-rich and fibrous atherosclerotic plaques resulted in 36 publications, published between 1998 and 2011. The HU-criteria were systematically analyzed based on the characteristics of the reporting study. Significant differences between HU-criteria were checked using Student’s t-test. Subsequently, a hierarchical classification of HU-criteria was developed based on the respective study characteristics. Results No correlation was found between HU-criteria and the reported lumen contrast-enhancement. Significant differences were found for HU-criteria when pooled according to the respective study characteristics: examination type, vessel type, CT-vendor, detector-rows, voltage-setting, and collimation-width. The hierarchical classification resulted in 21 and 22 CT attenuation value categories, for lipid-rich and fibrous plaque, respectively. More than 50% of the hierarchically classified HU-criteria were significantly different. Conclusion In conclusion, variations in the reported CT attenuation values for lipid-rich and fibrous plaque are so large that generalized values are unreliable for clinical use. The proposed hierarchical classification can be used to determine reference CT attenuation values of lipid-rich and fibrous plaques for the local setting.