Open Access
Decreases in Electrocardiographic R-Wave Amplitude and QT Interval Predict Myocardial Ischemic Infarction in Rhesus Monkeys with Left Anterior Descending Artery Ligation
Author(s) -
Xiaorong Sun,
Jindan Cai,
Xin Fan,
Ping Han,
Yuping Xie,
Jianmin Chen,
Ying Xiao,
Y. James Kang
Publication year - 2013
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0071876
Subject(s) - myocardial infarction , cardiology , medicine , qt interval , ligation , infarction , qrs complex , electrocardiography in myocardial infarction , electrocardiography , artery , ischemia
Clinical studies have demonstrated the predictive values of changes in electrocardiographic (ECG) parameters for the preexisting myocardial ischemic infarction. However, a simple and early predictor for the subsequent development of myocardial infarction during the ischemic phase is of significant value for the identification of ischemic patients at high risk. The present study was undertaken by using non-human primate model of myocardial ischemic infarction to fulfill this gap. Twenty male Rhesus monkeys at age of 2–3 years old were subjected to left anterior descending artery ligation. This ligation was performed at varying position along the artery so that it produced varying sizes of myocardial infarction at the late stage. The ECG recording was undertaken before the surgical procedure, at 2 h after the ligation, and 8 weeks after the surgery for each animal. The correlation of the changes in the ECG waves in the early or the late stage with the myocardial infarction size was analyzed. The R wave depression and the QT shortening in the early ischemic stage were found to have an inverse correlation with the myocardial infarction size. At the late stage, the R wave depression, the QT prolongation, the QRS score, and the ST segment elevation were all closely correlated with the developed infarction size. The poor R wave progression was identified at both the early ischemic and the late infarction stages. Therefore, the present study using non-human primate model of myocardial ischemic infarction identified the decreases in the R wave and the QT interval as early predictors of myocardial infarction. Validation of these parameters in clinical studies would greatly help identifying patients with myocardial ischemia at high risk for the subsequent development of myocardial infarction.