z-logo
open-access-imgOpen Access
Alternative Transcripts and 3′UTR Elements Govern the Incorporation of Selenocysteine into Selenoprotein S
Author(s) -
Jodi L. Bubenik,
Angela C. Miniard,
Donna M. Driscoll
Publication year - 2013
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0062102
Subject(s) - selenocysteine , selenoprotein , untranslated region , stop codon , five prime untranslated region , biology , rna splicing , three prime untranslated region , genetics , alternative splicing , messenger rna , microbiology and biotechnology , gene , biochemistry , rna , cysteine , enzyme , glutathione , glutathione peroxidase
Selenoprotein S (SelS) is a 189 amino acid trans-membrane protein that plays an important yet undefined role in the unfolded protein response. It has been proposed that SelS may function as a reductase, with the penultimate selenocysteine (Sec 188 ) residue participating in a selenosulfide bond with cysteine (Cys 174 ). Cotranslational incorporation of Sec into SelS depends on the recoding of the UGA codon, which requires a Selenocysteine Insertion Sequence (SECIS) element in the 3′UTR of the transcript. Here we identify multiple mechanisms that regulate the expression of SelS. The human SelS gene encodes two transcripts (variants 1 and 2), which differ in their 3′UTR sequences due to an alternative splicing event that removes the SECIS element from the variant 1 transcript. Both transcripts are widely expressed in human cell lines, with the SECIS-containing variant 2 mRNA being more abundant. In vitro experiments demonstrate that the variant 1 3′UTR does not allow readthrough of the UGA/Sec codon. Thus, this transcript would produce a truncated protein that does not contain Sec and cannot make the selenosulfide bond. While the variant 2 3′UTR does support Sec insertion, its activity is weak. Bioinformatic analysis revealed two highly conserved stem-loop structures, one in the proximal part of the variant 2 3′UTR and the other immediately downstream of the SECIS element. The proximal stem-loop promotes Sec insertion in the native context but not when positioned far from the UGA/Sec codon in a heterologous mRNA. In contrast, the 140 nucleotides downstream of the SECIS element inhibit Sec insertion. We also show that endogenous SelS is enriched at perinuclear speckles, in addition to its known localization in the endoplasmic reticulum. Our results suggest the expression of endogenous SelS is more complex than previously appreciated, which has implications for past and future studies on the function of this protein.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here