z-logo
open-access-imgOpen Access
Dynamic Changes in Single Unit Activity and Gamma Oscillations in a Thalamocortical Circuit during Rapid Instrumental Learning
Author(s) -
Chunxiu Yu,
David D. Fan,
Alberto Lopez,
Henry H. Yin
Publication year - 2012
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0050578
Subject(s) - prefrontal cortex , neuroscience , coherence (philosophical gambling strategy) , psychology , local field potential , thalamus , neural activity , physics , cognition , quantum mechanics
The medial prefrontal cortex (mPFC) and mediodorsal thalamus (MD) together form a thalamocortical circuit that has been implicated in the learning and production of goal-directed actions. In this study we measured neural activity in both regions simultaneously, as rats learned to press a lever to earn food rewards. In both MD and mPFC, instrumental learning was accompanied by dramatic changes in the firing patterns of the neurons, in particular the rapid emergence of single-unit neural activity reflecting the completion of the action and reward delivery. In addition, we observed distinct patterns of changes in the oscillatory LFP response in MD and mPFC. With learning, there was a significant increase in theta band oscillations (6–10 Hz) in the MD, but not in the mPFC. By contrast, gamma band oscillations (40–55 Hz) increased in the mPFC, but not in the MD. Coherence between these two regions also changed with learning: gamma coherence in relation to reward delivery increased, whereas theta coherence did not. Together these results suggest that, as rats learned the instrumental contingency between action and outcome, the emergence of task related neural activity is accompanied by enhanced functional interaction between MD and mPFC in response to the reward feedback.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here