
Inflammation Disrupts the LDL Receptor Pathway and Accelerates the Progression of Vascular Calcification in ESRD Patients
Author(s) -
Jing Liu,
Kun Ling,
Min Gao,
Chang Xian Wang,
Jie Ni,
Yang Zhang,
Xiao Liang Zhang,
Hong Liu,
Yan Li Wang,
Bi Cheng Liu
Publication year - 2012
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0047217
Subject(s) - inflammation , pathology , ldl receptor , calcification , matrix gla protein , vascular smooth muscle , biology , chemistry , endocrinology , medicine , lipoprotein , ectopic calcification , cholesterol , smooth muscle
Background Chronic inflammation plays a crucial role in the progression of vascular calcification (VC). This study was designed to investigate whether the low-density lipoprotein receptor (LDLr) pathway is involved in the progression of VC in patients with end-stage renal disease (ESRD) during inflammation. Methods and Results Twenty-eight ESRD patients were divided into control and inflamed groups according to plasma C-reactive protein (CRP) level. Surgically removed tissues from the radial arteries of patients receiving arteriovenostomy were used in the experiments. The expression of tumour necrosis factor-α (TNF-α) and monocyte chemotactic protein-1 (MCP-1) of the radial artery were increased in the inflamed group. Hematoxylin-eosin and alizarin red S staining revealed parallel increases in foam cell formation and calcium deposit formation in continuous cross-sections of radial arteries in the inflamed group compared to the control, which were closely correlated with increased LDLr, sterol regulatory element binding protein-2 (SREBP-2), bone morphogenetic proteins-2 (BMP-2), and collagen I protein expression, as shown by immunohistochemical and immunofluorescent staining. Confocal microscopy confirmed that inflammation enhanced the translocation of the SREBP cleavage-activating protein (SCAP)/SREBP-2 complex from the endoplasmic reticulum to the Golgi, thereby activating LDLr gene transcription. Inflammation increased alkaline phosphatase protein expression and reduced α-smooth muscle actin protein expression, contributing to the conversion of the vascular smooth muscle cells in calcified vessels from the fibroblastic to the osteogenic phenotype; osteogenic cells are the main cellular components involved in VC. Further analysis showed that the inflammation-induced disruption of the LDLr pathway was significantly associated with enhanced BMP-2 and collagen I expression. Conclusions Inflammation accelerated the progression of VC in ESRD patients by disrupting the LDLr pathway, which may represent a novel mechanism involved in the progression of both VC and atherosclerosis.