z-logo
open-access-imgOpen Access
Granulocyte-Colony Stimulating Factor Improves MDX Mouse Response to Peripheral Nerve Injury
Author(s) -
Gustavo Ferreira Simões,
Alexandre Leite Rodrigues de Oliveira
Publication year - 2012
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0042803
Subject(s) - synaptophysin , astrogliosis , axotomy , gliosis , glial fibrillary acidic protein , medicine , pathology , duchenne muscular dystrophy , endocrinology , lesion , spinal cord , glial scar , anatomy , astrocyte , immunohistochemistry , central nervous system , psychiatry
Background G-CSF has been shown to increase neuronal survival, which may positively influence the spinal cord microenvironment during the course of muscular dystrophies. Methodology/Principal Findings Male MDX mice that were six weeks of age received a left sciatic nerve transection and were treated with intraperitoneal injections of 200 µg/kg/day of G-CSF 7 days before and 7 days after the transection. The axotomy was performed after the cycles of muscular degeneration/regeneration, consistent with previous descriptions of this model of muscular dystrophy. C57BL/10 mice were used as control subjects. Seven days after the surgery, the animals were sacrificed and their lumbar spinal cords were processed for immunohistochemistry (anti-MHC I, anti-Synaptophysin, anti-GFAP and anti-IBA-1) and transmission electron microscopy. MHC I expression increased in both strains of mice after the axotomy. Nevertheless, the MDX mice displayed a significantly smaller MHC I upregulation than the control mice. Regarding GFAP expression, the MDX mice showed a stronger astrogliosis compared with the C57BL/10 mice across all groups. Both groups that were treated with G-CSF demonstrated preservation of synaptophysin expression compared with the untreated and placebo groups. The quantitative analysis of the ultrastructural level showed a preservation of the synaptic covering for the both groups that were treated with G-CSF and the axotomized groups showed a smaller loss of synaptic contact in relation to the treated groups after the lesion. Conclusions/Significance The reduction of active inputs to the alpha-motoneurons and increased astrogliosis in the axotomized and control groups may be associated with the cycles of muscle degeneration/regeneration that occur postnatally. The G-CSF treated group showed a preservation of the spinal cord microenvironment after the lesion. Moreover, the increase of MHC I expression in the MDX mice that were treated with G-CSF may indicate that this drug performs an active role in regenerative potential after lesions.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here