z-logo
open-access-imgOpen Access
A Novel High-Content Flow Cytometric Method for Assessing the Viability and Damage of Rat Retinal Ganglion Cells
Author(s) -
Zhi-Yang Chang,
DaWen Lu,
MingKung Yeh,
Chiao–Hsi Chiang
Publication year - 2012
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0033983
Subject(s) - flow cytometry , retinal ganglion cell , retinal , biology , microbiology and biotechnology , nmda receptor , viability assay , anatomy , chemistry , cell , biochemistry , receptor
Purpose The aim of the study was to develop a high-content flow cytometric method for assessing the viability and damage of small, medium, and large retinal ganglion cells (RGCs) in N-methyl-D-aspartic acid (NMDA)-injury model. Methods/Results Retinal toxicity was induced in rats by intravitreal injection of NMDA and RGCs were retrogradely labeled with Fluoro-Gold (FG). Seven days post-NMDA injection, flatmount and flow cytometric methods were used to evaluate RGCs. In addition, the RGC area diameter (D (a) ) obtained from retinal flatmount imaging were plotted versus apparent volume diameter (D (v) ) obtained from flow cytometry for the same cumulative cell number (sequentially from small to large RGCs) percentile (Q) to establish their relationship for accurately determining RGC sizes. Good correlation (r = 0.9718) was found between D (a) and apparent D (v) . Both flatmount and flow cytometric analyses of RGCs showed that 40 mM NMDA significantly reduced the numbers of small and medium RGCs but not large RGCs. Additionally, flow cytometry showed that the geometric means of FG and thy-1 intensities in three types of RGCs decreased to 90.96±2.24% (P<0.05) and 91.78±1.89% (P>0.05) for small, 69.62±2.11% (P<0.01) and 69.07±2.98% (P<0.01) for medium, and 69.68±6.48% (P<0.05) and 69.91±6.23% (P<0.05) for large as compared with the normal RGCs. Conclusion The established flow cytometric method provides high-content analysis for differential evaluation of RGC number and status and should be useful for the evaluation of various models of optic nerve injury and the effects of potential neuroprotective agents.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here